Structure Reports

Online
ISSN 1600-5368

Vicki Ronaldson, John. M. D. Storey and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.032$
$w R$ factor $=0.074$
Data-to-parameter ratio $=18.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N-(2-Bromophenyl)acetamide

The title compound, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrNO}$, posseses normal geometrical parameters. The crystal packing is influenced by an intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond.

Comment

The title compound, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrNO}$, (I), (Fig. 1) was prepared as an intermediate in a natural product synthesis.

(I)

The dihedral angle between the mean planes of the benzene ring (atoms $\mathrm{C} 1-\mathrm{C} 6$) and the $\mathrm{N} 1 / \mathrm{O} 1 / \mathrm{C} 7 / \mathrm{C} 8$ side-chain grouping in (I) is $42.75(14)^{\circ}$. This is intermediate between the situation in acetanilide [i.e. (I) without the Br atom], $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}$ (Brown, 1966; Wasserman et al., 1985), where the aromatic ring and side chain are twisted by 17.6°, and N-methylacetanilide, $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}$ (Pederson, 1967), where the two corresponding groups of atoms are constrained by symmetry to be perpendicular. The $\mathrm{C}_{\mathrm{ar}}-\mathrm{N}(\mathrm{ar}=$ aromatic $)$ bond distances are almost identical in (I) and acetanilide (Brown, 1966), being 1.418 (4) and 1.417 (2) A respectively, as are the $\mathrm{C}_{\mathrm{c}}-\mathrm{N}(\mathrm{c}=$ carbonyl) distances, at 1.358 (4) and 1.355 (2) A, respectively. The equivalent distances in N-methylacetanilide (Pederson, 1967), where any electronic conjugation between the benzene ring and amide group is presumably impossible because of their perpendicular orientation, are distinctly different, with $\mathrm{C}_{\mathrm{ar}}-\mathrm{N}$ much longer at $1.474 \AA$ and $\mathrm{C}_{\mathrm{c}}-\mathrm{N}$ significantly shorter at 1.325 Å.

The bond angle sum about N 1 in (I) is 360.0°, suggesting that this atom is essentially $s p^{2}$-hybridized. All the other geometrical parameters for (I) lie within their expected ranges (Allen et al., 1995).

The crystal packing in (I) is influenced by an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Table 1 and Fig. 2) that links the molecules into chains propagating along [100]. There are no $\pi-\pi$ stacking interactions in (I). The packing is shown in Fig. 3.

Experimental

2-Bromoaniline ($3.44 \mathrm{~g}, 20.0 \mathrm{mmol}$) was added to a solution of acetyl chloride ($1.88 \mathrm{~g}, 24.0 \mathrm{mmol}$) and DIPEA (N, N-diisopropylethylamine) $(3.12 \mathrm{~g}, 24.0 \mathrm{mmol})$ in dry tetrahydrofuran $(20 \mathrm{ml})$ at 273 K . On completion (as monitored by thin-layer chromatography), the reaction mixture was diluted with water $(20 \mathrm{ml})$ and the product was

Figure 1
View of (I) (50\% probability displacement ellipsoids; H atoms are drawn as small spheres of arbitrary radii).

Figure 2
Detail of (I) showing how the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (dashed lines) links molecules into a chain. The view direction is perpendicular to the mean plane of the benzene ring of the central molecule, showing that no $\pi-\pi$ stacking occurs. All H atoms except atom H 1 and its symmetry equivalents have been omitted for clarity. [Symmetry codes: (i) $x-1, y, z$; (ii) $x+1, y, z$.]
extracted with EtOAc $(3 \times 20 \mathrm{ml})$. The organic phase was then washed with water $(2 \times 20 \mathrm{ml})$ and brine $(20 \mathrm{ml})$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to yield the crude product, which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give (I) (yield $97 \%, 4.13 \mathrm{~g}$) as clear needles; one of these was cut to a block for data collection; m.p. 363-364 K; $R_{\mathrm{F}}=0.12$ [hexane/EtOAc (5:1)]. IR $\left(\mathrm{KBr} \mathrm{disc}, \mathrm{cm}^{-1}\right)$: $\nu_{\max } 3272(\mathrm{NH}), 3159(\mathrm{Ar}-\mathrm{H}), 1647(\mathrm{C}=\mathrm{O}), 1518(\mathrm{ArC=}) ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 2.21\left(3 \mathrm{H}, s, \mathrm{CH}_{3}\right), 6.97(1 \mathrm{H}, t, J=7.5 \mathrm{~Hz}$, $\mathrm{Ar}-\mathrm{H}), 7.29(1 \mathrm{H}, t, J=7.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.51(1 \mathrm{H}, d, J=8.0 \mathrm{~Hz}, \mathrm{Ar}-$ H), $7.61(1 \mathrm{H}, b s, \mathrm{NH}), 8.31(1 \mathrm{H}, d, J=7.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 24.9\left(-\mathrm{COCH}_{3}\right), 113.2(\mathrm{Ar} \mathrm{C}-\mathrm{Br}), 122.0,125.2,128.4$, $132.2(4 \times \mathrm{Ar} \mathrm{C}), 135.7(-\mathrm{CO}-\mathrm{NH}-\mathrm{C}-), 168.3(-\mathrm{C}=\mathrm{O})$. Mass spectrum: $[M+\mathrm{H}]^{+} 212.979, \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrNO}$ requires 212.979 .

Figure 3
The packing in (I), viewed down [100], with all H atoms except H 1 omitted for clarity.

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrNO}$
$M_{r}=214.06$
Monoclinic, $P 2_{1} / n$
$a=4.7790(1) \AA$
$b=11.9257(4) \AA$
$c=14.6703(3) \AA$
$\beta=96.8173(16)^{\circ}$
$V=830.19(4) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD diffractometer ω and φ scans
Absorption correction: multi-scan (SADABS; Bruker, 2003)
$T_{\text {min }}=0.387, T_{\text {max }}=0.726$
9212 measured reflections
1905 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.074$
$S=1.26$
1905 reflections
106 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.713 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1977 reflections
$\theta=2.9-27.5^{\circ}$
$\mu=4.89 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Block, colourless
$0.24 \times 0.10 \times 0.07 \mathrm{~mm}$

1750 reflections with $I>2 \sigma(I)$

$$
R_{\mathrm{int}}=0.037
$$

$\theta_{\text {max }}=27.5^{\circ}$
$h=-6 \rightarrow 5$
$k=-15 \rightarrow 15$
$l=-18 \rightarrow 19$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+1.9011 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.76 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.38 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.0163 (11)

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.83(4)$	$2.10(4)$	$2.896(3)$	$161(3)$

Symmetry code: (i) $x-1, y, z$.
All the C -bound H atoms were placed in idealized positions ($\mathrm{C}-$ $\mathrm{H}=0.95-0.98 \AA$) and refined as riding on their carriers with the constraint $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ carrier $)$ or $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}($ methyl carrier) applied. The methyl group was allowed to rotate about the $\mathrm{C} 7-\mathrm{C} 8$ bond as a rigid group. The N -bound H atom was located in a

organic papers

difference map and its position was freely refined with the constraint $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK, DENZO (Otwinowski \& Minor, 1997) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We thank the EPSRC National Mass Spectrometry Service (University of Swansea) and the EPSRC National Crystallography Service (University of Southampton) for data collections.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1995). International Tables for Crystallography, Vol. C, pp. 685-706. Dordrecht: Kluwer.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Brown, C. J. (1966). Acta Cryst. 21, 442-445.
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Pederson, B. F. (1967). Acta Chem. Scand. 21, 1415-1424.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wasserman, H. J., Ryan, R. R. \& Layne, S. P. (1985). Acta Cryst. C41, 783-785.

